skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krause, Sebastian_J E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Methane is a major greenhouse gas and a key component of global biogeochemical cycles. Microbial methane often deviates from isotope and isotopolog equilibrium in surface environments but approaches equilibrium in deep subsurface sediments. The origin of this near-equilibrium isotopic signature in methane, whether directly produced by methanogens or achieved through anaerobic oxidation of methane (AOM), remains uncertain. Here, we show that, in the absence of AOM, microbial methane produced from deep-sea sediments exhibits isotopolog compositions approaching thermodynamic equilibrium due to energy limitation. In contrast, microbial methane from salt marsh and thermokarst lakes exhibits significant hydrogen and clumped isotopic disequilibrium due to high free-energy availability. We propose that clumped isotopologs of methane provide a proxy for characterizing the bioenergetics of environments for methane production. Together, these observations demonstrate methane clumped isotopes as a powerful tool to better understand the relation between methane metabolisms and the energy landscape in natural environments. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026